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Abstract1

Classification algorithms assign observations to groups based on patterns in data. The machine-learning2

community have developed myriad classification algorithms, which are employed in diverse life-science3

research domains. When applying such algorithms, researchers face the challenge of deciding which4

algorithm(s) to apply in a given research domain. Algorithm choice can affect classification accuracy5

dramatically, so it is crucial that researchers optimize these choices based on empirical evidence rather than6

hearsay or anecdotal experience. In benchmark studies, multiple algorithms are applied to multiple datasets,7

and the researcher examines overall trends. In addition, the researcher may evaluate multiple hyperparameter8

combinations for each algorithm and use feature selection to reduce data dimensionality. Although software9

implementations of classification algorithms are widely available, robust benchmark comparisons are difficult10

to perform when researchers wish to compare algorithms that span multiple software packages.11

Programming interfaces, data formats, and evaluation procedures differ across software packages; and12

dependency conflicts may arise during installation. To address these challenges, we created ShinyLearner, an13

open-source project for integrating machine-learning packages into software containers. ShinyLearner14

provides a uniform interface for performing classification, irrespective of the library that implements each15

algorithm, thus facilitating benchmark comparisons. In addition, ShinyLearner enables researchers to16

optimize hyperparameters and select features via nested cross validation; it tracks all nested operations and17

generates output files that make these steps transparent. ShinyLearner includes a Web interface to help users18

more easily construct the commands necessary to perform benchmark comparisons. ShinyLearner is freely19

available at https://github.com/srp33/ShinyLearner.20

Keywords: Machine learning, supervised learning, classification, software containers, benchmark, feature21

selection, algorithm optimization, model selection22
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Background23

Classification falls under the category of supervised learning, a branch of machine learning. When24

performing classification, researchers seek to assign observations to distinct groups. For example, medical25

researchers use classification algorithms to identify patterns that predict whether patients have a particular26

disease, will respond positively to a particular treatment, or will survive a relatively long period of time after27

diagnosis[1–11]. Applications in molecular biology include annotating DNA sequencing elements,28

identifying gene structures, and predicting protein secondary structures[12].29

Typically, a classification algorithm is “trained” on a dataset that contains samples (observations) from two or30

more groups, and the algorithm identifies patterns that differ among the groups. If these patterns are reliable31

indicators of group membership, the algorithm will be able to accurately assign new samples to these groups32

and thus may be suitable for broader application. Different research applications require different levels of33

accuracy before classification algorithms are suitable for broader application. However, even small34

improvements in accuracy can provide large benefits. For example, if an algorithm predicts drug-treatment35

responses for 1000 patients and attains accuracy levels that are 2% higher than a baseline method, this36

algorithm would benefit 20 additional patients. Accordingly, a key focus of classification research in the life37

sciences is to identify generalizable ways to optimize prediction accuracy.38

The machine-learning community have developed hundreds of classification algorithms and have39

incorporated many of these implementations into open-source software packages[13–18]. Each algorithm has40

different properties, which affect its suitability for particular applications. In addition, most algorithms41

support hyperparameters, which alter the algorithms’ behavior and can affect the algorithms’ accuracy42

dramatically. In addition, feature-selection (or feature-ranking) algorithms can be used in complement to43

classification algorithms, helping to identify combinations of variables that are most predictive of group44

membership and aiding in data interpretation[19,20]. With this abundance of options to consider, researchers45

face the challenge of identifying which algorithm(s), hyperparameter combinations, and features are optimal46

for a particular dataset.47

To improve the odds of making successful predictions, researchers should choose algorithms,48

hyperparameters, and features based on empirical evidence rather than hearsay or anecdotal experience. Prior49

studies can provide insight into algorithm performance, but few studies evaluate algorithms comprehensively,50

and performance may vary widely for different types of data. One way to select these options empirically is51

via nested cross-validation[21]. With this approach, a researcher divides a single dataset into training and52
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validation sets. Within each training set, the researcher divides the data further into training and validation53

subsets and then evaluates various options using these subsets. The top-performing option(s) are then used54

when making predictions on the outer validation set. Alternatively, a researcher might perform a benchmark55

study, applying (non-nested) cross validation to multiple datasets from a given research domain. After testing56

multiple algorithms, hyperparameters, and/or feature subsets, the researcher can examine overall trends and57

identify options that tend to perform well[22,23]. With either approach, it is ideal to evaluate a58

comprehensive set of options. However, several challenges make it difficult to perform such evaluations59

effectively:60

• Researchers may wish to compare algorithms that have been implemented in different software61

packages. Although many machine-learning packages allow users to execute algorithms62

programmatically, application programming interfaces (APIs) are not standardized, and they are63

implemented in diverse programming languages.64

• Different software implementations use different techniques for evaluating algorithm performance, so65

it is difficult to ensure that comparisons are consistent.66

• Input and output formats differ by software implementation, thus requiring custom efforts to prepare67

data and interpret results.68

• When installing the software, researchers typically must install a series of software dependencies.69

Installation requirements often differ by operating system, and versioning conflicts can arise[24].70

To reduce these barriers, we created ShinyLearner. For this open-source project, we have integrated existing71

machine-learning packages into containers, which provide a consistent interface for performing benchmark72

comparisons of classification algorithms. ShinyLearner can be installed on Linux, Mac, or Windows73

operating systems, with no need to install software dependencies other than the Docker containerization74

software. ShinyLearner currently supports 53 classification algorithms and 1300+ hyperparameter75

combinations across these algorithms; users can perform automatic hyperparameter tuning via nested cross76

validation. In addition, ShinyLearner supports 16 feature-selection algorithms, enabling researchers to reduce77

data dimensionality before performing classification (via nested cross validation). New algorithms can be78

integrated in an extensible manner.79

ShinyLearner is designed to be friendly to non-computational scientists—no programming is required. We80

provide a Web-based tool (http://bioapps.byu.edu/shinylearner) to guide users through the process of creating81

the Docker commands necessary to execute the software. ShinyLearner supports a variety of input formats82

and produces output files in “tidy data” format[25], thus making it easy to import results into external tools.83
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Even though other machine-learning packages support nested cross validation, these evaluations may occur84

in a “black box.” ShinyLearner tracks all nested operations and generates output files that make this process85

transparent.86

Below we describe ShinyLearner in more detail and illustrate its use via benchmark evaluations. We evaluate87

10 classification algorithms and 10 feature-selection algorithms on 10 biomedical datasets. In addition, we88

assess the effects of hyperparameter optimization on predictive performance, provide insights on model89

interpretability, and consider practical elements of performing benchmark comparisons.90

Methods91

ShinyLearner encapsulates open-source, machine-learning packages into Docker images[26], which are92

available on Docker Hub (https://hub.docker.com/r/srp33/shinylearner/). Currently, ShinyLearner supports93

algorithms from scikit-learn, Weka, mlr, h2o, and Keras (with a TensorFlow backend)[13–15,27–29]. To94

facilitate user interaction, to harmonize execution across the tools, and to evaluate predictive performance,95

ShinyLearner uses shell scripts, Python scripts, R scripts, and Java code[30–32]; these are included in the96

Docker images. To perform an analysis, the user executes a shell command, specifying arguments to indicate97

the location(s) of the input files, which algorithms to use, whether to perform Monte Carlo or k-fold cross98

validation, etc. The analysis is executed within a container, and output files are saved to a directory that the99

user specifies. TensorFlow provides support for execution on graphical processing units, which requires a100

slightly different software configuration, so we provide a separate Docker image that enables this feature101

(https://hub.docker.com/r/srp33/shinylearner_gpu/). All changes to the ShinyLearner code are tested via102

continuous integration[33]; build status can be viewed at https://travis-ci.org/srp33/ShinyLearner.103

Figure S1 shows an example ShinyLearner command that a user might execute. For convenience, and to help104

users who have limited experience with Docker or the command line, we created a Web-based user interface105

where users can specify local data paths, choose algorithms from a list, and select other settings106

(https://bioapps.byu.edu/shinylearner). After the user has made these selections, the Web interface generates107

a Docker command, which the user can copy and paste; Windows Command Line, Mac Terminal, and Linux108

Terminal commands are generated. We used the R Shiny framework to build this web application[34].109

ShinyLearner interfaces with each third-party machine-learning package via shell scripts wrap that around110

the software’s API. For each algorithm, one shell script specifies the algorithm’s default hyperparameters. In111

most cases, additional shell scripts specify alternative hyperparameters. The classification algorithms in112
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ShinyLearner span methodological categories, including linear models, kernel-based techniques, tree-based113

approaches, Bayesian models, distance-based methods, ensemble approaches, and neural networks. In114

selecting algorithms to include, we focused primarily on implementations that can handle discrete and115

continuous data values, support multiple classes, and produce probabilistic predictions. For each algorithm,116

we reviewed documentation for the third-party software and identified a representative variety of117

hyperparameter options. Admittedly, these selections are somewhat arbitrary and inexhaustive. However,118

they can be extended with additional options. We excluded some algorithm implementations and119

hyperparameter combinations because errors occurred when we attempted to execute them or because they120

failed to achieve reasonable levels of classification accuracy on simulated data.121

Additional algorithms (and hyperparameter combinations) can be incorporated into ShinyLearner. The sole122

requirements are that they have been implemented as free and open-source software and provide an API (that123

can be executed via Linux command-line scripts). Users who wish to extend ShinyLearner must:124

1. Identify any software dependencies that the new algorithm requires. If those dependencies are not125

currently included in the ShinyLearner image, the user must modify the ShinyLearner Dockerfiles126

accordingly.127

2. Create bash script(s) that accepts specific arguments and invoke the new algorithm.128

3. Request that these changes be included in ShinyLearner via a GitHub pull request.129

ShinyLearner supports the following input-data formats: tab-separated value (.tsv), comma-separated value130

(.csv), and attribute-relation file format (.arff). When tab-separated or comma-separated files are used,131

column names and row names must be specified; by default, rows must represent samples (observations) and132

columns must represent features (variables). However, transposed versions of these formats can be used133

(features as rows and samples as columns); in these cases, the user should use “.ttsv” or “.tcsv” as the file134

extension. ShinyLearner accepts files that have been compressed with the gzip algorithm (using “.gz” as the135

file extension). Users may specify more than one data file as input, after which ShinyLearner will identify136

sample identifiers that overlap among the files and merge on those identifiers. If the user specifies,137

ShinyLearner will scale numeric values, one-hot encode categorical variables[35], and impute missing values.138

ShinyLearner supports two schemes for evaluating predictive performance: Monte Carlo cross validation and139

k-fold cross validation[36,37]. In Monte Carlo cross validation, the data are split randomly into a training and140

validation set; the algorithm is allowed to access the class labels for the training data only. Later the algorithm141

makes predictions for the validation samples, and the accuracy of those predictions is evaluated using various142

metrics. Typically, this process is repeated many times to derive confidence intervals for the accuracy metrics.143
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In k-fold cross validation, the process is similar, except that the data are partitioned into evenly sized groups144

and each group is used as a validation set through rounds of training and testing. When multiple algorithms145

or hyperparameter combinations are employed, ShinyLearner evaluates nested training and validation sets,146

with the goal of identifying the optimal combination for each algorithm. Then it uses these selections when147

making predictions on the outer validation set. Nested cross validation is also used for feature selection; a148

feature-selection algorithm ranks the features within each nested training set, and different quantities of149

top-ranked features are used to train the classification algorithm. The feature subsets that perform best are150

used in making the outer validation-set predictions. Hyperparameter optimization and feature selection may151

be combined; however, such analyses are highly computationally intensive for large benchmarks.152

All outputs are stored in tab-delimited files, thus enabling users to import results directly into external153

analysis tools. ShinyLearner produces output files that contain the following information for each154

combination of algorithm, hyperparameters, and cross-validation iteration: 1) predictions for each sample, 2)155

classification metrics, 3) execution times, and 4) standard output, including a log that indicates the arguments156

that were used, thus supporting reproducibility. When nested cross-validation is performed, ShinyLearner157

produces output for every hyperparameter combination that was tested in the nested folds and indicates158

which combination performed best for each algorithm.159

ShinyLearner supports the following classification metrics:160

• AUROC (Area under the receiver operating characteristic curve)[38]161

• Accuracy (proportion of samples whose discrete prediction was correct)162

• Balanced accuracy (to account for class imbalance)163

• Brier score[39]164

• F1 score[40]165

• False discovery rate166

• False negative rate167

• False positive rate168

• Matthews correlation coefficient[41]169

• Mean misclassification error170

• Negative predictive value171

• Positive predictive value172

• Recall (sensitivity)173

• True negative rate (specificity)174
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• True positive rate (sensitivity)175

To calculate these metrics and to perform other data-processing tasks, ShinyLearner uses the AUC[42],176

mlr[15], dplyr[43], data.table[44], and readr[45] packages. For multiclass problems, ShinyLearner allows the177

underlying machine-learning packages to use whatever strategy they have implemented for classifying with178

multiple classes. ShinyLearner then calculates performance metrics in a one-versus-rest manner and averages179

results across the class options.180

When feature selection is performed, each algorithm produces a ranked list of features for each nested181

training set. To aid the user in understanding which features are most informative, ShinyLearner aggregates182

these ranked lists using the Borda count method[46]. These aggregate rankings are stored in tab-delimited183

output files.184

Availability of source code and requirements185

• Project name: ShinyLearner186

• Project home page: https://github.com/srp33/ShinyLearner187

• Operating system(s): Any operating system on which Docker can be installed188

• Programming languages: Java, Python, R, bash189

• Other requirements: Docker (https://docker.com)190

• License: MIT191

The steps of preparing the data and executing ShinyLearner for the results described in this article are in a192

Jupyter notebook (see https://github.com/srp33/ShinyLearner/blob/master/Demo/Execute_Algorithms.ipynb).193

The code for creating the figures in this manuscript can be found (and re-executed) in a Code Ocean capsule194

(https://doi.org/10.24433/CO.5449763.v1). We used the ggplot2 and cowplot packages[47,48] to create195

figures.196

Analyses197

ShinyLearner enables researchers to perform classification benchmark studies. To illustrate this functionality,198

we performed three types of benchmark: 1) basic classification with default hyperparameters, 2)199

classification with hyperparameter optimization, and 3) classification with feature selection. For each200

analysis, we used 10 classification algorithms:201
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• keras/dnn - Deep neural networks (implemented in Keras/TensorFlow)[27,29,49]202

• mlr/h2o.randomForest - Random forests (implemented in mlr, h2o)[15,28]203

• mlr/mlp - Multilayer perceptron (mlr)[50]204

• mlr/xgboost - xgboost (mlr)[51]205

• sklearn/decision_tree - Decision tree (implemented in scikit-learn)[13,52]206

• sklearn/logistic_regression - Logistic regression with the LIBLINEAR solver207

(scikit-learn)[53]208

• sklearn/svm - Support vector machines (scikit-learn)[54]209

• weka/HoeffdingTree - Hoeffding tree (implemented in Weka)[14,55]210

• weka/MultilayerPerceptron - Multilayer perceptron (Weka)211

• weka/SimpleLogistic - Simple logistic regression (Weka)[56]212

In the third analysis, we used 10 feature-selection algorithms:213

• mlr/kruskal.test - Kruskal-Wallis rank sum test (mlr)[57]214

• mlr/randomForestSRC.rfsrc - Permuted random forests (mlr)[58]215

• sklearn/mutual_info - Mutual information (scikit-learn)[59]216

• sklearn/random_forest_rfe - Random forests—recursive feature elimination (scikit-learn)[60,61]217

• sklearn/svm_rfe - Support vector machines—recursive feature elimination (scikit-learn)[61]218

• weka/Correlation - Pearson’s correlation (Weka)[62]219

• weka/GainRatio - Information gain ratio (Weka)[52]220

• weka/OneR - OneR (Weka)[63]221

• weka/ReliefF (Weka)[64]222

• weka/SymmetricalUncertainty - Symmetrical uncertainty (Weka)[65]223

In each analysis, we used 5 rounds of Monte Carlo cross validation. For the second and third analyses, we224

used 3 rounds of nested Monte Carlo cross validation for each outer round of cross validation. In the third225

analysis, we evaluated the top-ranked 1, 3, 5, 10, 15, 20, 50, and 200 features and identified the best of these226

options via nested cross validation. In evaluating the results, we focused on area under the receiver operating227

characteristic curve (AUROC) because this metric can be applied to probabilistic predictions and accounts228

for class imbalance.229

As an initial test, we generated a “null” dataset using numpy[66]. We used this dataset to verify that230

ShinyLearner produces classification results in line with random-chance expectations when no signal is231

present. This dataset consisted of 20 numeric variables (mean = 0, standard deviation = 1) and 10 categorical232
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variables across 500 simulated samples. AUROC values for all classification algorithms were near 0.5, as233

expected by random chance, irrespective of whether hyperparameter optimization or feature selection was234

performed (Figure S2).235

Next, we collected 10 biomedical datasets from the Penn Machine Learning Benchmarks repository[67]:236

• Acquired Immune Deficiency Syndrome (AIDS) categorical data[68]237

• Thyroid disease[52]238

• Breast cancer[69]239

• Dermatology[70]240

• Diabetes241

• Hepatitis[71]242

• Iris[72]243

• Liver disorder[73]244

• Molecular biology (promoter gene sequences)[74]245

• Yeast[75]246

These datasets vary by number of samples (minimum = 51; maximum = 7201) and number of features (min247

= 5; max = 172). For all datasets, we converted categorical variables to multiple binary variables using248

one-hot encoding. When executing ShinyLearner, we scaled numeric values using scikit-learn’s249

RobustScaler, which subtracts the median and scales the data based on the interquartile range[76];250

accordingly, this method is robust to outliers. In addition, we used ShinyLearner to impute missing values;251

this method uses the median for numeric variables and the mode for categorical variables.252

Classification analysis with default hyperparameters253

Initially, we applied 10 classification algorithms to 10 biomedical datasets using default hyperparameters.254

Most algorithms made near-perfect predictions for the Thyroid, Dermatology, and Iris datasets, whereas255

predictions were less accurate overall for the remaining datasets (Figure 1). The weka/HoeffdingTree and256

sklearn/decision_tree algorithms often underperformed relative to the other algorithms (Figure 2).257

Indeed, for half of the datasets, weka/HoeffdingTree performed as poorly or worse than would be258

expected by random chance. The remaining 8 classification algorithms performed relatively well, but259

predictive performance varied considerably across the datasets (Figure S3). For example, the AUROC for260
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mlr/mlp and sklearn/logistic_regression was 0.07 higher than the median on the AIDS dataset; the261

AUROC for sklearn/svm was 0.14 lower than the median.262

10



molecular−biology_promoters yeast

iris liver−disorder

diabetes hepatitis

breast−cancer dermatology

analcatdata_aids ann−thyroid

0.6 0.8 1.0 0.6 0.8 1.0

AUROC (median per iteration)

Algorithm

keras/dnn

mlr/h2o.randomForest

mlr/mlp

mlr/xgboost

sklearn/decision_tree

sklearn/logistic_regression

sklearn/svm

weka/HoeffdingTree

weka/MultilayerPerceptron

weka/SimpleLogistic

263

Figure 1: Classification performance per dataset (default hyperparameters). We evaluated the264

predictive performance of 10 classification algorithms on 10 biomedical datasets. These results were265

generated using default hyperparameters for each algorithm. We measured predictive performance using the266
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receiver operating characteristic curve (AUROC) and calculated the median across 5 Monte Carlo iterations.267

Predictive performance differed considerably across and within the datasets.268
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Figure 2: Classification performance per algorithm relative to other classification algorithms (default270

hyperparameters). We evaluated the predictive performance of 10 classification algorithms on 10271

biomedical datasets. These results were generated using default hyperparameters for each algorithm. For272

each dataset, we calculated the AUROC for each algorithm relative to the median across all algorithms. The273

13



weka/HoeffdingTree and sklearn/decision_tree algorithms underperformed in comparison to the274

other algorithms.275

14



Across the Monte Carlo iterations for each dataset, the predictive performance of276

sklearn/decision_tree and weka/MultilayerPerceptron varied most, whereas277

weka/HoeffdingTree varied least (in part because AUROC was frequently 0.5) (Figure S4). The278

keras/dnn and mlr/h2o.randomForest algorithms took longest to execute, whereas sklearn/svm and279

sklearn/logistic_regression were among the fastest (and most accurate) algorithms (Figure S5). Two280

pairs of classification algorithms use similar theoretical approaches but were implemented in different281

machine-learning libraries; multilayer perceptron was implemented in Weka and mlr; logistic regression was282

implemented in Weka and scikit-learn. The AUROC values were strongly—but not perfectly—correlated283

between these pairs of implementations (Figures S6 and S7).284

With the exception of sklearn/decision_tree, all classification algorithms produced sample-wise,285

probabilistic predictions. We examined these predictions for the Diabetes dataset and found that the range286

and shape of these predictions differed widely across the algorithms (Figure 3). Although many classification287

metrics, including AUROC, can cope with distributional differences, these differences must be considered in288

multiple classifier systems[77].289
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Figure 3: Sample-level predictions for each algorithm on the Diabetes dataset (default291

hyperparameters). The Diabetes dataset includes a class variable indicating whether or not patients292

received a positive diagnosis. Each panel of this figure shows positive-diagnosis predictions for each293

classification algorithm. All algorithms except sklearn/decision_tree produced probabilistic294

predictions. The range and distribution of these predictions differed greatly across the algorithms.295
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Classification analysis with hyperparameter optimization296

In the second analysis, we applied the same classification algorithms to the same datasets but allowed297

ShinyLearner to perform hyperparameter optimization via nested cross validation. As few as 2298

(mlr/xgboost) and as many as 95 (sklearn/decision_tree and weka/MultilayerPerceptron)299

hyperparameter combinations were available for each algorithm. In nearly every example, classification300

performance improved after hyperparameter optimization (Figure 4), sometimes dramatically. The301

performance improvements were most drastic for the weka/HoeffdingTree and302

sklearn/decision_tree algorithms, which often performed poorly with default parameters.303
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Figure 4: Classification performance when optimizing vs. not optimizing hyperparameters. We tested305

10 classification algorithms on 10 biomedical datasets and used nested cross validation to select306

hyperparameters. To evaluate for change in predictive performance, we calculated the percent change in the307

median AUROC values when using optimized vs. default hyperparameters. Most algorithms demonstrated308

improved classification performance with optimized hyperparameters.309
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ShinyLearner supports 53 hyperparameter combinations for the keras/dnn algorithm. Each of these310

combinations altered the algorithm’s performance at least to a small degree on every dataset (Figure S8). The311

Thyroid dataset varied least across the hyperparameter combinations, perhaps because the number of312

instances (n = 7200) was nearly 10 times larger than any other dataset. Generally, this algorithm performed313

better with a wider architecture containing only two layers. Having a wider structure greatly increases the314

parameter space of the network and allows it to learn more complex relationships among features, while315

limiting the network to only two layers prevents overfitting, a common problem when applying neural316

networks to datasets with a limited number of instances. In addition, adding dropout and L2 regularization317

also helps to prevent the network from overfitting. In tuning these hyperparameters, we found that a smaller318

dropout rate, more training epochs, and a smaller regularization rate resulted in higher AUROC values319

(Figure S9). Figure S10 illustrates for the Diabetes dataset that diagnosis predictions can differ considerably,320

depending on which hyperparameter combination is used.321

Classification analysis with feature selection322

In any dataset, some features are likely to be more informative than other features. We used ShinyLearner to323

perform feature selection (via nested cross validation) before classification. In total, we evaluated 100 unique324

combinations of feature-selection algorithm and classification algorithm (with default hyperparameters). In325

44% of cases, feature selection increased the median AUROC, whereas it decreased AUROC in 39% of cases326

(Figure 5). Feature selection sometimes improved the performance of weka/HoeffdingTree and327

sklearn/decision_tree, which were the lowest performers without feature selection.328
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Figure 5: Classification performance when performing feature selection vs. not performing feature330

selection. In combination with classification, we performed feature selection via nested cross validation on331

10 biomedical datasets. For each algorithm, we used default hyperparameters. These plots show the percent332

change in the median AUROC when using vs. not using feature selection. Although the effects of feature333

selection varied across the algorithms, median AUROCs increased in many cases.334
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Figure 6 illustrates the relative predictive ability of each combination of feature-selection and classification335

algorithms. The mlr/randomForestSRC.rfsrc and sklearn/random_forest_rfe algorithms336

performed best on average; both approaches use the Random Forests algorithm to evaluate feature relevance.337

The weka/OneR algorithm, which evaluates a single feature at a time in isolation, performed worst. Across338

the datasets, the combination of mlr/randomForestSRC.rfsrc (feature selection) and mlr/xgboost339

(classification) performed best. Perhaps surprisingly, the combination of sklearn/svm_rfe (feature340

selection) and sklearn/svm (classification), which are both based on Support Vector Machines, was ranked341

in the bottom quartile.342
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Figure 6: Performance for each combination of classification and feature-selection algorithm. This344

figure shows classification results for the nested cross-validation folds across each combination of345

feature-selection algorithm and classification algorithm. Averaged across all datasets and classification346

algorithms, we ranked the feature-selection algorithms based on AUROC values attained for nested347

validation sets. For simplicity and consistency across the datasets, this figure shows only the results when the348

top-5 features were used. Higher average ranks indicate better classification performance.349
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In seeking to identify the most informative features, ShinyLearner evaluated various quantities of top-ranked350

features via nested cross validation. Figure 7 illustrates the relative performance of each of these quantities351

on each dataset. In all cases but one, using one feature performed worst. Generally, a larger number of352

features resulted in higher AUROC values. However, more features sometimes decreased performance. For353

example, on the breast-cancer dataset, the highest AUROC values were attained using 3 out of 14 features.354
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Figure 7: Median classification performance of feature-selection algorithms by number of features.356

We applied feature selection to each dataset and selected the top x number of features. This figure shows357

which values of x resulted in the highest AUROC values for each dataset, averaged across all358

feature-selection algorithms. Different datasets had different quantities of features; this graph only shows359

results for x values relevant to each dataset. Accordingly, we scaled the AUROC values in each column360

between zero and one to ensure that the comparisons were consistent across all datasets. Higher values361

indicate better classification performance. Generally, a larger number of features resulted in better362

classification performance, but this varied across the datasets.363
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ShinyLearner can inform users about which features are most informative for classification. In the364

Dermatology dataset, these feature ranks were highly consistent across the feature-selection algorithms365

(Figure S11). The goal of this classification problem was to predict a patient’s type of Eryhemato-Squamous366

disease. Elongation and clubbing of the rete ridges as well as thinning of the suprapapillary epidermis were367

most highly informative of disease type, whereas features such as the patient’s age were less informative.368

Discussion369

The machine-learning community has developed an abundance of algorithms and software implementations370

of those algorithms. Life scientists use these resources for many research applications. But they face the371

challenge of identifying which algorithms and hyperparameters will be most accurate and which features are372

most informative for a given dataset. Many researchers limit classification analyses to a single algorithm,373

perhaps one that is familiar to them or that has been reported in the literature for a similar study. Others may374

try a large number of algorithms; however, performing benchmark comparisons in an ad hoc manner requires375

a considerable coding effort and can introduce biases if done improperly. Alternatively, some researchers376

may develop new algorithms without providing evidence that these algorithms outperform existing ones. We377

developed ShinyLearner as a way to simplify the process of performing classification benchmark studies.378

ShinyLearner does not implement any classification or feature-selection algorithm; rather, it serves as a379

wrapper around existing software implementations. Currently, algorithms from Weka, scikit-learn, mlr, h2o,380

and Keras are supported in ShinyLearner. In aggregate, these algorithms represent a diverse range of381

methodological approaches and thus can support comprehensive benchmark evaluations. On their own, each382

of the third-party tools encapsulated within ShinyLearner provides a way to optimize hyperparameters383

programmatically and perform feature selection. In addition, tools such as caret[17], KNIME[18], and384

Orange[78] provide these options. Thus, in situations where a researcher has programming expertise and is385

satisfied with the algorithms and tuning functionality available in one of those tools, the researcher might386

prefer to use these tools directly rather than use ShinyLearner. ShinyLearner is most useful when a387

researcher:388

1. wishes to compare algorithms that have been implemented in multiple machine-learning packages,389

2. does not have programming expertise,390

3. desires to perform complex operations via nested cross validation, such as evaluating different sizes of391

feature subsets,392
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4. wishes to analyze algorithm performance using a tool or programming language that is different than393

was used to perform classification,394

5. wishes to gain deeper insight into decisions made during nested cross validation, and/or395

6. seeks to evaluate the tradeoff between predictive accuracy and time of execution.396

ShinyLearner is limited to datasets that fit into computer memory. For larger datasets, frameworks such as397

Apache SystemML support distributed algorithm execution[79]; however, the number of algorithms398

implemented in these frameworks is still relatively small.399

The current release of ShinyLearner supports diverse classification algorithms and hyperparameter400

combinations; however, this collection is far from exhaustive. Using ShinyLearner’s extensible architecture,401

the research community can integrate additional algorithms and hyperparameter combinations. In addition,402

algorithm designers can use our framework to compare their algorithms against competing methods and403

disseminate their algorithms to the research community.404

Containers provide many advantages for software deployment. Tool installation and computational405

reproducibility are easier because all software components are encapsulated within the container, and406

container images can be archived and versioned[80]. One other benefit may be less apparent:407

containerization facilitates the use of diverse programming languages. Distinct components of ShinyLearner408

are implemented in 4 different programming languages. We chose this approach because we determined that409

each language was suited to specific types of tasks. We posit that the future of bioinformatics development410

will increasingly follow this pattern. Furthermore, we advocate for the approach of providing a graphical user411

interface, such as the Web-based tool we provided for ShinyLearner. Such tools make it easier for412

users—especially those who have limited command-line experience—to formulate Docker commands.413

Our analysis of 10 biomedical datasets, 10 classification algorithms, and 10 feature-selection algorithms414

confirmed that the choice of algorithm and hyperparameters has a considerable impact on classification415

performance and selected features. Although some algorithms typically performed better than others, no416

single algorithm consistently outperformed any other. This finding supports the “No Free Lunch”417

theorem[81] and confirms that multiple classifier systems hold promise for aggregating evidence across418

algorithms[82]. Also importantly, algorithm performance is likely to differ according to data characteristics.419

Algorithms that perform well on “wide” datasets (many features, few samples) may not perform as well on420

“tall” datasets. Algorithms that perform well with numeric data may not perform as well on categorical or421

mixed data. These differences highlight the importance of domain-specific benchmark comparisons.422
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